
Docker & AWS
Fabrizio Ciacchi

Explained simple for PHP Developers :)

Who am I?

Fabrizio Ciacchi / @ciacchi / ciacchi.it

Lead Software Developer @ Greta & Starks Apps GmbH.

Worked previously in Rocket Internet and Spryker Systems

PHP Developer from more than 10 years

I’m working with Symfony from version 2+

I want to tell a story...

… how I started the migration of Greta App:

● Legacy Application on Hosted Server

I have been requested to:

● Create the whole AWS deployment system
● Migrate to a new Symfony Application
● Ensure security and best practices

Step One / Clean-up

● Clean-up your passwords and conf (use .env)
● Clean-up your data - you should have ‘demo’ data for your dev

and staging machines. It also facilitate tests and development
○ Put DB and Content in different repositories

● Update your application:
○ Latest version of PHP, MySQL and other softwares

○ Latest version of your framework

○ If you use it, check and update your composer

● Move your cache and tmp files to Redis (or other storage)

Step two / Dockerize

● Very simple:
○ A virtual machine with a configuration file

● Why we use it?
○ Faster - it depends from the host system

○ Configuration based - it removes a lot of Admin/DevOPs issues

○ Reproducible environment

● What to use:
○ Bitnami Nginx

○ Bitnami PHP

○ Official MySQL

○ Bitnami has a lot of packages (Laravel, Redis, etc)

○ And… nibirrayy/docker-smtp

Step three / Still Docker

Why those packages?

● Bitnami packages are highly configurable

● MySQL package allows to import SQL files

Also remember:

● Use Docker-hub

● port mapping is to expose ports outside

● You’ll probably need an SMTP server

● Use mounted volumes (ie: composer)

● Avoid custom Docker images (you’ll have to compile your own image)

AWS

● So many services!!!
● Don’t get

overwhelmed
● You might need a CC

(ok you have also
free tiers)

EC2 - your ‘machine’

The first thing to do is to set-up your Staging machine.

Why Staging?

● First you want to start simple

● Also can be used as ‘base’ for Production

Configure Security Groups & Roles

Additionally you might

want the IAM role

AmazonS3FullAccess

At the end you need to

generate and

download a PEM

certificate!

Set-up Application + S3 Bucket

Clone your repository(-ies) in /home/ec2-user (do not store GIT credentials)

But sym-link them under ie: /opt/app

S3 Bucket is nearly infinite storage:

● 1 for Deployments
● 1 for Logging
● 1 for Storage (media, etc.)

User s3fs-fuse to mount the S3 bucket(s) in your EC2:
https://github.com/s3fs-fuse/s3fs-fuse.git

Re-mount at reboot with crontab (-e)

https://github.com/s3fs-fuse/s3fs-fuse.git

ECS - visually

● Task is a mapping of your Docker file
○ Create the shared mounts (your folders in EC2)

○ Set-up the min (and max) for memory and CPU unit

○ Network ‘bridge’

○ Set-up services as non-essential (DB essential)

○ Add networking links so services can ‘see’ each other

○ Port mapping

● Create a Cluster and a Service associated with the Task.

● Install the ECS Agent in your EC2:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-inst
all.html

● In etc/ecs/ecs.config set-up your ECS service name

ECS_CLUSTER=staging

ECS - Elastic Container Service

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-install.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-install.html

CodePipeline

PIPELINE

Source Code CodeBuild CodeDeploy

(GITHUB) Generate Artifacts in S3 Deploy in EC2

Trigger buildspec.yml appspec.yml

● Define IAM Roles
● Install the Agent:

https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent-opera
tions-install.html

● Link:https://hackernoon.com/continuous-deployment-with-aws-codedeploy-github-d
1eb97550b82

● Hooks:https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspe
c-file-structure-hooks.html#appspec-hooks-ecs

https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent-operations-install.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent-operations-install.html
https://hackernoon.com/continuous-deployment-with-aws-codedeploy-github-d1eb97550b82
https://hackernoon.com/continuous-deployment-with-aws-codedeploy-github-d1eb97550b82
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file-structure-hooks.html#appspec-hooks-ecs
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file-structure-hooks.html#appspec-hooks-ecs

Ok, but where is my website visible

Your EC2 instance has a public and private IP address. But that’s not
good (not secure)

● Register or transfer your domain with Route53
● Set-up an Elastic IP address (public) for your staging instance
● Point staging.myapp.com to the Elastic IP
● Allow only HTTP/HTTPS to the public IP (no SSH, only private)
● Add your SSL certificate with AWS certificate manager

What about Production?

● Create a snapshot of Staging
● Create a new EC2 instance from it

○ Change the attribute name to production
○ Download the new PEM certificate
○ Log-in inside and change the data source (DB?), env files,

and ECS cluster name
● Shut it down - do not terminate (it will destroy)
● Create Launch Template from it

And then and then and then...

● Load balancer

● Target Group

● Auto-scaling + Launch Template

● Assign Elastic IP to load balancer

● Route53 to assign production to that IP (www and without)

CodePipeline
● Create a new ECS task + service

● Create a Blue/Green deployment

● Take care of the appspec hooks (now with routing

traffic become more important)

Todo:

● Monitoring
● TravisCI
● Kibana

Thanks everybody :)

@ciacchi / ciacchi.it

