
REST API
A REAL CASE SCENARIO

REST API: A REAL CASE SCENARIO

MY NAME IS FABRIZIO

▸ I’m Italian but I live in Berlin

▸ I’m a PHP Backend Developer for Flaconi

▸ Founder of Startup Cicero (travel planner)

▸ It’s my first talk, be nice :)

http://www.flaconi.de
http://www.cicero-app.com

REST API: A REAL CASE SCENARIO

WHAT IS THIS TALK ABOUT

▸ Issues when we migrate from a Monolithic application to a
separated BE/FE;

▸ REST best practices;

▸ Keep an eye on Testing;

▸ Be prepared for Micro-services;

REST API: A REAL CASE SCENARIO

WHAT THIS TALK IS -NOT- ABOUT

▸ Not a talk about REST fundamentals;

▸ It’s not about OAuth;

▸ We will not speak about caching and rate limits;

▸ We will not speak about HATEOAS;

WHAT IS
REST?

REST API: A REAL CASE SCENARIO

REST & RESTFUL?

▸ REST is not a technology, neither a defined standard.

▸ REST in an approach. There are a set of rules to follow, but not
specific rules for every situation.

▸ That means there is not ‘silver bullet’ for your specific problem.

▸ REST summarise good practices, and most likely you don’t
need previous knowledge to use those specific API.

THE
PROBLEM

THE SOFTWARE YOU ARE
WORKING ON IS PROBABLY
ALREADY THE LEGACY SYSTEM

Fabrizio Ciacchi

REST API: A REAL CASE SCENARIO

REST API: A REAL CASE SCENARIO

LEGACY SYSTEM

▸ Your company might have:

▸ monolithic application;

▸ BE/FE with API but not well organised;

▸ Or you have several (micro)service, looking like the flying
spaghetti monster :)

▸ Software lifespan is 18 months.

REST API: A REAL CASE SCENARIO

BE/FE + MAGENTO

▸ When I joined Flaconi, they already started to split BE/FE, but
the BE APIs were not following any rule;

▸ They were implemented each time for that particular need and
in different ways (endpoint, verbs, response code, json
structure);

▸ Plus the legacy part was in Magento and needed to be
migrated.

REST API: A REAL CASE SCENARIO

BAD EXAMPLES

/cms/block/id/{id}
/cms/block/key/{key}
/cms/block/keys/{key1,key2,...}

/line/{id}

/product-review/get/{id}

/customer/4
/customer/email/{base64}
/customer/4/orders/1900002
/customer/5/orders/1900002 ← Possible to retrieve an order for another user

REST API: A REAL CASE SCENARIO

LACK OF DOCUMENTATION 1

▸ What does that mean?

REST API: A REAL CASE SCENARIO

LACK OF DOCUMENTATION 2

▸ How do I know that the object is inside the key transfer?

WHAT DID
WE LEARN?

REST API: A REAL CASE SCENARIO

CLEAR BEHAVIOUR

▸ There are many HTTP verbs and you can apply them on both
collections or elements. Make it simple and stick to it.

TEXT

PUT VS PATCH

▸ Infinite debate:

▸ PUT pass all the info

▸ PATCH pass only the info to update

▸ Not passing or passing empty/null values in PUT should reset
the correspondent values;

▸ Choose only one for your system, and stick to it.

▸ DELETE 204 vs 404? Depends on your security.

REST API: A REAL CASE SCENARIO

1-TO-1 MAPPING OF VERBS

▸ HTTP verbs should be mapped 1-to-1 to CRUD operations.

▸ Why? Consistency!

REST API: A REAL CASE SCENARIO

RESPONSE CODES
▸ There are many HTTP response codes, use it!

▸ 200 (GET)

▸ 201 + Location (POST)

▸ 204 (PUT/DELETE)

▸ 301 Moved Permanently

▸ 404 Resource not found (/customers/5 -> does not exists)

▸ 405 Method not allowed (should tell which verbs are allowed)

▸ 409 Conflict (try to insert twice the same resource)

▸ 415 Unsupported media type

▸ 422 Unprocessable entity (wrong payload POST)

▸ 500 Managed Exceptions

REST API: A REAL CASE SCENARIO

URL

▸ Always end a collection with a slash “/“

▸ /customers/

▸ /carts/

▸ Never end an element, by ID or attribute, with a slash:

▸ /customers/4

▸ /customers/4/carts/active

REST API: A REAL CASE SCENARIO

DDD APPROACH

▸ Use the ‘Domain’ definition as in the Domain Driven Design to
define your API:

▸ Customer is one domain;

▸ Cart is one domain;

▸ Wishlist is one domain;

▸ In this way the APIs are decoupled and can be split in the
future into micro-services.

REST API: A REAL CASE SCENARIO

RESPONSE GUIDELINES

▸ Don’t use plain response in your json.

▸ It’s better to use an ‘element’ or a ‘collection’ key. It’s easier to parse.

▸ Start using “_link”, as a first step to HATEOAS

▸ Use the proper vendor HTTP header:

▸ application/vnd.flaconi.customers+json

▸ You can also add versioning:

▸ application/vnd.flaconi.customers.v1+json

REST API: A REAL CASE SCENARIO

YOU CAN SERVE DIFFERENT FORMATS

▸ Using the media type header to drive the response format
(Accept on request / Content-type on answer)

JSON Representation:

{ “user”: { “name”: “Chuck Norris”, “occupation”: “martial artist” } }

XML Representation:

<user>
<name>Chuck Norris</name> <occupation>martial artist</occupation>|
</user>

HTML Representation:

<html>
<head><title>Web page of Chuck Norris</title></head> <body><p>Name: Chuck Norris</p>
<p>Occupation: martial artist</p></body>
</html>

REST API: A REAL CASE SCENARIO

HOW DOES IT LOOK LIKE NOW?

▸ Endpoints:

▸ /carts/4/products/

▸ /cms/chanel

▸ /customers/fabrizio@ciacchi.it

▸ /customers/4/orders/

▸ /wishlist/3

REST API: A REAL CASE SCENARIO

AND THE RESPONSE?
{
 "element": {
 "id": "12612",
 "email": "magento_12612@example.de",
 "createdAt": “2016-03-12 16:00:00”,
 "isActive": "1",
 "defaultBilling": "30556",
 "defaultShipping": "59952",
 "firstname": "firstname_12612",
 "gender": “m”,
 "lastname": "lastname_12612",
 "middlename": null,
 "passwordHash": "XXXXXXXXXXX",
 "prefix": "Herr",
 "phone": null
 },
 "_links": {
 "_self": "http://backend.flaconi.de/customers/12612"
 },
 "status_code": 200,
 "api_status": "successful",
 "message": "OK"
}

REST API: A REAL CASE SCENARIO

TAKEAWAYS

▸ Always start from the design of your API. Try to understand the
requirements with a long view, and be prepared to be flexible.

▸ Be practical. If it makes sense to returns the list of products within your
“cart” response, do it. You’ll save 50% of the API calls to your
shopping cart.

▸ Never implement only one verb. Having a POST but not having a GET,
even if it’s ok for your product, will not make your life easier when you
test/debug.

▸ Always write the documentation for your API. There are great tools like
RAML!

REST API: A REAL CASE SCENARIO

SHOULD I BE ALWAYS RESTFUL?

▸ The answer is NO

▸ Example:

▸ /wishlist/id/421

▸ /wishlist/customer/2

▸ /wishlist/share/abc82jdh287ha

▸ It’s not rest at all, but it works!

WHY WE
BUILD API
WITH REST?

REST API: A REAL CASE SCENARIO

TO SAVE MONEY

▸ As soon as we went online with the new REST API, we found
out that:

▸ 1/3 of the API calls FE to BE where returning 404;

▸ It was a call to get optimised content for a brand, but would
return 404 if the request was for 2 or more brands.

▸ The cost of the servers is up to 10.000 €/month

▸ Saved around 3.000 €/month

REST API: A REAL CASE SCENARIO

TO HAVE A MORE RELIABLE SYSTEM

▸ But we also notice other things:

▸ A lot 422 responses for Customers (invalid registration);

▸ Several 405 for Applying a Coupon (empty coupon code);

▸ Most of the 500 errors related to get Products (wrong join);

▸ You want to have a clean, reliable system. Because when there
is something wrong, you want to see it.

REST API: A REAL CASE SCENARIO

A STEP TOWARDS THE FUTURE

▸ Being RESTful is also a must-step if you want to:

▸ Implement HATEOAS

▸ Switch to micro-services

▸ Test your application

TESTING WITH
CODECEPTION

REST API: A REAL CASE SCENARIO

TEST THE GET 1/4

INSERT INTO `customer_entity` (`entity_id`, `entity_type_id`, `attribute_set_id`,
`website_id`, `email`, `group_id`, `increment_id`, `store_id`, `created_at`,
`updated_at`, `is_active`, `email_sender`, `email_long_order`, `recency`,
`frequency`, `monetary_sum`, `monetary_avg`, `first_sale_date`, `last_order_sum`,
`customer_group`, `currency_code`, `last_sale_date`, `blacklist`, `current_points`,
`used_points`, `bp_coupon_code`, `trigger_status`, `arvato_comda_number`)

VALUES

(4, 1, 0, 1, 'jon-snow@example.de', 1, NULL, 1, '2012-06-15 18:04:42',
'2015-11-26 16:28:09', 1, 0, 1, '0', 0, NULL, NULL, NULL, NULL, NULL, 'EUR',
NULL, 0, 0, 0, NULL, 0, NULL);

REST API: A REAL CASE SCENARIO

TEST THE GET 2/4

$endPoints = [

 'customer' => [

 'get' => [

 'params' => '[:id]',

 'uri' => 'customers/[:id]',

],

],

];

REST API: A REAL CASE SCENARIO

TEST THE GET 3/4
 public function getWithSuccess($scenario, $id, $response = 200)
 {
 /** @var ApiTester $I */
 list($I, $uri) = $this->initiateTest($scenario, $id);

 $I->wantToTest('Check that ' . $this->domain . ' GET works');
 $I->sendGET($uri);

 $I->seeResponseCodeIs($response);

 $I->seeResponseIsJson();

 $I->seeHttpHeader(‘Content-Type', 'application/vnd.flaconi.' . $this->domain . '+json;v=1; charset=utf-8');

 $I->canSeeResponseJsonMatchesJsonPath('_links._self');

 $I->seeResponseContains('"element":');
 $I->seeResponseContains('"id": "' . $id . '"');
 }

REST API: A REAL CASE SCENARIO

TEST THE GET 4/4
$customerId = 4;

$invalidCustomerId = 3;

include_once(__DIR__ . '../../../_base/Customers/GetCustomer.php');

use Codeception\Customers\GetCustomer;

$customerTest = new GetCustomer($locale);

/** @var \Codeception\Scenario $scenario */

$customerTest->getWithSuccess($scenario, $customerId);

$customerTest->getNotFound($scenario, $invalidCustomerId);

$customerTest->getWithEmptyId($scenario);

$customerTest->getWithException($scenario);

ANY QUESTION?

fabrizio@ciacchi.it

REST API: A REAL CASE SCENARIO

REST API: A REAL CASE SCENARIO

LINKS

▸ REST APIs with Symfony2: The Right Way

▸ http://williamdurand.fr/2012/08/02/rest-apis-with-symfony2-the-right-w
ay/

▸ Best Practices for Designing a Pragmatic RESTful API

▸ http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

▸ Getting Started with REST and Zend Framework 2

▸ http://hounddog.github.io/blog/getting-started-with-rest-and-zend-fra
mework-2/

http://williamdurand.fr/2012/08/02/rest-apis-with-symfony2-the-right-way/
http://williamdurand.fr/2012/08/02/rest-apis-with-symfony2-the-right-way/
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
http://hounddog.github.io/blog/getting-started-with-rest-and-zend-framework-2/
http://hounddog.github.io/blog/getting-started-with-rest-and-zend-framework-2/

REST API: A REAL CASE SCENARIO

LINKS

▸ REST: From GET to HATEOAS

▸ http://www.slideshare.net/josdirksen/rest-from-get-to-hateoas

▸ Using HTTP Methods for RESTful Services

▸ http://www.restapitutorial.com/lessons/httpmethods.html

▸ Building a Hypermedia-Driven RESTful Web Service

▸ https://spring.io/guides/gs/rest-hateoas/

▸ Implementing a RESTful Service Server-Side

▸ http://dojotoolkit.org/reference-guide/1.10/quickstart/rest.html

http://www.slideshare.net/josdirksen/rest-from-get-to-hateoas
http://www.restapitutorial.com/lessons/httpmethods.html
https://spring.io/guides/gs/rest-hateoas/
http://dojotoolkit.org/reference-guide/1.10/quickstart/rest.html

